Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data
نویسندگان
چکیده
The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia, using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a shortseason crop during the fallow period. Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season (June–October), followed by a fallow during the rabi season (November–February). These cropland areas are not suitable for growing rabi-season rice due to their high water needs, but are suitable for a short -season (≤3 months), low water-consuming grain legumes such as chickpea (Cicer arietinum L.), black gram, green gram, and lentils. Intensification (double-cropping) in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands. Several grain legumes, primarily chickpea, are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region. The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers: (a) rice crop is grown during the primary (kharif) crop growing season or during the north-west monsoon season (June–October); (b) same croplands are left fallow during the second (rabi) season or during the south-east monsoon season (November–February); and (c) ability to support low water-consuming, short-growing season (≤3 months) grain legumes (chickpea, black gram, green gram, and lentils) during rabi season. Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season, because the moisture/water demand of these crops is too high. The study established cropland classes based on the every 16-day 250 m normalized difference vegetation index (NDVI) time series for one year (June 2010–May 2011) of Moderate Resolution Imaging Spectroradiometer (MODIS) data, using spectral matching techniques (SMTs), and extensive field knowledge. Map accuracy was evaluated based on independent ground survey data as well as compared with available sub-national level statistics. The producers’ and users’ accuracies of the cropland fallow classes were between 75% and 82%. The overall accuracy and the kappa coefficient estimated for rice classes were 82% and 0.79, respectively. The analysis estimated approximately 22.3 Mha of suitable rice-fallow areas in South Asia, with 88.3% in India, 0.5% in Pakistan, 1.1% in Sri Lanka, 8.7% in Bangladesh, 1.4% in Nepal, and 0.02% in Bhutan. Decision-makers can target these areas for sustainable intensification of short-duration grain legumes. ARTICLE HISTORY Received 17 December 2015 Accepted 16 March 2016
منابع مشابه
Estimating Global Cropland Extent with Multi-year MODIS Data
This study examines the suitability of 250 m MODIS (MODerate Resolution Imaging Spectroradiometer) data for mapping global cropland extent. A set of 39 multi-year MODIS metrics incorporating four MODIS land bands, NDVI (Normalized Difference Vegetation Index) and thermal data was employed to depict cropland phenology over the study period. Sub-pixel training datasets were used to generate a set...
متن کاملMapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images
As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural-urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) a...
متن کاملAnalysis of Time-Series MODIS 250 m Vegetation Index Data for Crop Classification in the U.S. Central Great Plains
The global environmental change research community requires improved and up-to-date land use/land cover (LULC) datasets at regional to global scales to support a variety of science and policy applications. Considerable strides have been made to improve large-area LULC datasets, but little emphasis has been placed on thematically detailed crop mapping, despite the considerable influence of manag...
متن کاملState-level Crop Mapping in the U.s. Central Great Plains Agroecosystem Using Modis 250-meter Ndvi Data
Improved and up-to-date land use/land cover (LULC) datasets are needed for intensively cropped regions such as the U.S. Central Great Plains, in order to support a variety of science and policy applications focused on understanding the role and response of the agricultural sector to environmental change issues. The Moderate Resolution Imaging Spectroradiometer (MODIS) holds considerable promise...
متن کاملSustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential
Changing dietary preferences and population growth in South Asia have resulted in increasing demand for wheat and maize, along side high and sustained demand for rice. In the highly productive northwestern Indo-Gangetic Plains of South Asia, farmers utilize groundwater irrigation to assure that at least two of these crops are sequenced on the same field within the same year. Such double croppin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Digital Earth
دوره 9 شماره
صفحات -
تاریخ انتشار 2016